

Course Title: Digital Logics

Course No. : ICT Ed. 425 Nature of course: Theoretical + Practical

Level: B.Ed. Credit Hour: 3 (2T+1P)

Semester: Second Teaching Hour: 80 (32+48)

1. Course Description

This course provides students with the basic concepts of digital logic, organization and architecture of

digital computers as foundation for more advanced computer related studies. It also intends to provides the

skill on able to design simple digital devices and implement them. It covers the knowledge area of digital

system, logic gates and Boolean algebra, combinational and sequential circuit design, registers, counters,

memories and programmable logic devices and VHDL. Laboratory work is essential in this course.

2. Course Objectives

Following are the general objective of this course:

• To make the student knowledgeable about fundamental digital logics and switching networks as

well as to exposure of Boolean Algebra and its application for circuit analysis.

• To enable the student to identify the design concept of multilevel gates networks, flip-flops,

counters and logic devices.

3. Specific Objectives and Contents

Specific Objectives Contents

• Differentiate between digital and analog

system.

• Calculate and converse the number

system digital, binary, octal and

hexadecimal.

• Execute the different number system in

arithmetic.

• Define codes such as ASCII, EBCDIC &

UNICODE.

• Explain the error detection and error

correction concept.

Unit 1: Introduction to Digital System (10)

1.1 Introduction to Analog and digital system

1.2 Features of Digital Systems

1.3. Number Systems- Decimal, Binary, Octal,

Hexadecimal and their inter conversions

1.4. Binary Arithmetic. complement system and subtraction

using 1's, 2's, 9's, and 10's complement method

1.5. Codes: BCD, XS-3, Gray code, hamming code,

alphanumeric codes (ASCII, EBCDIC,

UNICODE),

1.6. Error detecting and error correcting codes.

Lab Work:

• Practices on Number conversion between Decimal,

Binary, Octal, Hexadecimal.

• Binary Arithmetic 1's, 2's, 9's, and 10's

• Explain Boolean Logic and Boolean

Algebra

• Generate the logic gates with diagram,

truth table and Boolean function.

• Explain Boolean Algebra and laws of

Boolean Algebra

• Identify the universal gate.

Unit 2: Logic Gates and Boolean Algebra (10)

2.1. Basic definition of Boolean Algebra

2.2. Basic Theory of Boolean Algebra, Boolean Functions,

Logical operations

2.3. Logic Gates, IC Digital Logic Families. Basic gates

(AND, OR, NOT gates)

2.4. Universal gates (NAND and NOR gates), other gates

(XOR, XNOR gates)

2.5. Boolean identities, De Morgan Laws.

Lab Work:

• Verification of AND, OR, NOT, NAND, NOR,

XOR, and XNOR gate.

• Simplification of Boolean algebra with

the use Boolean rules

• Solve the Boolean expressions using

Boolean algebra, K-Map and Quine

McClusky Method

Unit 3: Simplification of Boolean Functions (10)

3.1 Simplification of Boolean algebra using Boolean

rules

3.2 K-map method (two, three, and four Variable

Maps), Don’t care conditions

3.3 Canonical and standard forms, product of Sums,

sum of product simplification

3.4 NAND and NOR implementation

3.5 Quine McClusky method.

Lab Work:

• Apply to simplification Boolean expression using

Boolean rules.

• Apply to simplification Boolean expression using

K-Map Method.

• Apply to simplification Boolean expression using

Quine McClusky Method.

• Explain combinational circuits

• Implement the adder, multiplexers and

de-multiplexers

• Implement the encoders and decoder

• Design combinational circuit design

• Design binary and decimal adder

Unit 4: Combinational Circuit Design (12)

4.1 Half adder, full adder, half subtracter, and full

subtracter.

4.2 Code converters

4.3 Multiplexers and demultiplexers

4.4 Encoders and decoders

4.5 Combinational Circuit design procedure

4.6 Binary Parallel Adder

4.7 Decimal Adder

 Lab Work:

• Design the adder and subtracter

• Implement logic of Mux/Demux and

Encoder/Decoder

• Design the number system converter circuit

• Design Various Decision making circuits.

• Explain Sequential Logic Circuits

• Design Flip-flops

• Create flip-flop excitation table

Unit 5: Sequential Circuit Design (7)

5.1. Flip-flops: RS, JK, D, and T, Latches

5.2 Triggering of flip-flops

5.3 Master slave flip flop

5.4 Flip-flop excitation table and design procedure.

5.5 state diagram and simple sequential circuits

 Lab Work:

• Design the different types of flip-flops.

• Explain counters and Shift Registers.

• Define electronics part of memories

• Describe digital logic families

• Analyze and design synchronous

sequential circuits

• Analyze asynchronous sequential circuits

Unit 6: Registers, Counters, Memories and

Programmable Logic Devices (15)

6.1 Resisters, Shift registers

6.2 Analysis of synchronous sequential circuit

6.3 Design of synchronous sequential Circuits: Counters,

state diagram, state reduction, state assignment

6.4 Analysis of asynchronous sequential circuit

6.5 Problems of asynchronous sequential circuit design

6.6 Memories: ROM, PROM, EPROM

6.7 PLD, PLA

6.8 Digital Logic Families: TTL, ECL, and CMOS

 Lab Work:

• Design any clock driven sequential circuit

• Design verify the principle of conversion of parallel

data into serial.

• Define concept of VHDL

• Design simple circuits by using VHDL

Unit 7: VHDL (10)

7.1 RTL Design with VHDL

7.1.1 Shape of VHDL

7.1.2 Data Types

7.1.3 Concurrent Statements

7.1.4 Processes and Variables

7.1.5 Simulating a Simple Design

7.1.6 Creating Memory

7.1.7 Finite State Machines

7.1.8 Loops and Conditional Elaboration

7.1.9 Attributes

7.1.10 Functions and Procedures

LAB Work:

• Demonstrate the different circuit in VHDL Tools

• Design real world logic circuits using

VHDL or any other hardware design

tools

Unit 8. Project Work (6)

4. Instructional Techniques

The instructional techniques for this course are divided into two groups. First group consists of

general instructional techniques applicable to most of the units. The second group consists of

specific instructional techniques applicable to particular units.

4.1 General Instructional Techniques

Reading materials will be provided to students in each unit. Lecture, Discussion, use of multi-

media projector, brain storming are used in all units.

4.2 Specific Instructional Techniques

Demonstration is an essential instructional technique for all units in this course during teaching learning

process. Unit one and three are theoretical and numerical chapters so, they require more exercise and

demonstration of principles. Use more pictures, flowchart of method, and assignment. Specifically,

demonstration with practical works will be specific instructional technique in this course. The details of

suggested instructional techniques are presented below:

Units Activities

Unit 2: Logic Gates and

Boolean Algebra

• Verify AND, OR, NOT, NAND, NOR, XOR, and XNOR gate using

physical real bread board and two input TTL ICs.

• Demonstration by the teacher on physical real device and circuitry design

to demonstrate the working principle, objective and their use.

• Individual lab work of real bread board by each student

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 4: Combinational

Circuit Design

• Design the adder and subtracter, Implement logic of Mux/Demux and

Encoder/Decoder, and Design the number system converter circuit,

Design Various Decision making circuits.

• Lab work in pairs in different tasks assigned by the teacher

• Monitoring of students' work by reaching each pair and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 5: Sequential

Circuit Design

• Design RS, JD, D and T flip-flops with their excitation table and design

procedure.

• Demonstrate the objective, use and practically implement the master

slave flip-flop.

• Demonstrate the state diagram of any simple sequential circuit.

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 6: Registers,

Counters, Memories

and Programmable

Logic Devices

• Demonstrate the implement the concept, objective and real use of

registers, counters, memories and PLDs.

• Design any clock driven sequential circuit, verify the principle of

conversion of parallel data into serial. Design circuits like: digital clock,

voting system, counting machine, storage device, traffic control system,

frequency division circuits, and analyze circuits.

• Demonstrate the interfacing method with various types of logic families

and integrated circuits.

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 7: VHDL • Explain the fundamental of VHDL programming language using class

lecture method.

• VHDL language should be taught to specify the logic circuits. Instructor

should illustrate how VHDL can be used to specify the desired

functionality and how CAD tools provide a mechanism for developing

the required circuits. Instructor should assign design projects like

Adder/Subtracter, Multiplexer/Demultiplexer, Encoder/Decoder, Flip-

flops, resister and counters to each individual using both methodologies:

manual design and CAD tools to design logic circuits.

Project Work • Design any real world digital logic circuit using combinational and

sequential circuits.

• Use VHDL programming language.

• It is a project to be completed by individual student under the direct

supervision of project supervisor.

5. Evaluation :

Internal

Assessment

External Practical

Exam/Viva

Semester Examination Total Marks

40 Points 20 Points 40 Points 100 Points

Note: Students must pass separately in internal assessment, external practical exam and semester

examination.

5.1 Internal Evaluation (40 Points):

Internal evaluation will be conducted by subject teacher based on following criteria:

1) Class Attendance 5 points

2) Learning activities and class performance 5 points

3) First assignment (written assignment) 10 points

4) Second assignment (Case Study/project work with presentation) 10 points

5) Terminals Examination 10 Points

5.2 Semester Examination (40 Points)

Examination Division, Dean office will conduct final examination at the end of semester.

1) Objective question (Multiple choice 10 questions x 1mark) 10 Points

2) Subjective answer questions (6 questions x 5 marks) 30 Points

Total 40

points

5.3 External Practical Exam/Viva (20 Points):

Examination Division, Dean Office will conduct final practical examination at the end of

semester.

6. Recommended Books and References materials

Recommended Books:

 Total 40 points

Floyd, T. L. (2009). Digital fundamentals (10th ed). Upper Saddle River, N.J: Pearson/Prentice

Hall.

Mano, M. M., & Kime, C. R. (2008). Logic and computer design fundamentals (4. ed). Upper

Saddle River, NJ: Pearson Prentice Hall.

References materials:

Brown, S. D., & Vranesic, Z. G. (2014). Fundamentals of digital logic with Verilog design (Third

edition). New York: McGraw-Hill Higher Education.

Rafiquzzaman, M. (2005). Fundamentals of digital logic and microcomputer design (5th ed).

Hoboken, N.J: J. Wiley & Sons.

Mano, M. M. (2002). Digital design (3rd ed). Upper Saddle River, NJ: Prentice-Hall.

Course Title: Object Oriented Programming with C++

Course No. : ICT. Ed. 426 Nature of course: Theoretical + Practical

Level: B.Ed. Credit Hour: 3 hours (2T+1P)

Semester: Second Teaching Hour: 80hours (32+48)

1. Course Description

The aim of the course is to develop the skill on thinking about computation and problem solving in

Object Oriented Paradigms. The course helps the students to discover the basic concepts of object-

oriented programming concept such as object, class, inheritance, polymorphism, abstraction and

encapsulation and apply in C++. Students are more engaged in laboratory work to exaction of

programing experiments rather than theoretical concept.

2. General Objectives

Following are the general objective of this course:

• To acquaint the student with fundamentals object oriented paradigms and programming style in

C++ programming language.

• To develop the skill on apply object oriented programming concept in programming.

• To enable a student in explore the new software development paradigms.

3. Course Outlines:

Specific Objectives Contents

• Compare procedure and

object oriented

programming concept

• Describe the feature of

object oriented

programming.

• List out the C++ compilers

• Compare coding structure of

C and C++.

• Demonstrate the C++

programming styles.

Unit 1: Concept of Object Oriented Programming (12)

1.1 Programming Languages and Software Crisis

1.2 Procedure Vs Object Oriented Programming Language

1.3 Feature of Object Oriented Programming

1.4 Popular Object Oriented Programming Language and

features

1.5 Advantage and Disadvantage of OOPs

1.6 Introduction of C++ and Compilers

1.7 Programming Structure in C++

1.8 Comparison on C and C++

1.9 Additional Data types, token in C++

1.10 Insertion and Extraction Operators

Practical Works:

• Install the compiler of C++.

• Use Insertion and Extraction Operator.

• Compare the C and C++ Compiler and structure

• Explain the Object and

Class

• Define Data member and

Member function.

• Define inline member

function.

• Use array in member

function and objects.

• Define static and friends

function.

• Explain constructor and

destructors.

Unit 2: Object and Class (16)

2.1 Concept of Object and Class

2.2 Define Data Member and Member Function

2.3 Create object and access Member Function

2.4 Making outer function inline

2.5 Array with in Class

2.6 Array of Objects

2.7 Static Data Member and Static Function

2.8 Friends Functions

2.9 Concept of Constructor and Destructor

2.10 Empty, Parameterized and Copy constructor

2.11 Define Destructor

Practical Works:

• Create class and objects with data member and member

function.

• Declare and define member function and data member with

visibility.

• Create static function

• Create friend functions.

• Create different types of constructors

• Explore the concept of

constructor and

Destructors.

• Apply Binary operator

and unary operator

overloading.

Unit 3: Operator Overloading (12)

3.1 Concept of Operator Overloading

3.2 Defining Operator Overloading

3.3 Rules of Operating Overloading

3.4 Unary Operator Overloading

3.5 Return types in overloading function

• Describe data

conversion methods.

3.6 Binary Operator Overloading

3.7 Manipulation String using Operator Overloading

3.8 New and Delete Operator Overloading

3.9 Data Conversion

Practical Works:

• Create unary operator overloading.

• Apply different types of operator overloading function return

methods.

• Apply binary operator overloading.

• Create Data conversion methods

• Explore the concept of

inheritance

• Describe the base class

and access specifier .

• Apply single, multiple,

multilevel inheritance.

• Use constructor in

Derived class.

Unit 4: Inheritance (12)

4.1 Concept of Inheritance

4.2 Base and Derived Class

4.3 Private, Public and Protected Specifier

4.4 Derived class declaration

4.5 Member function overriding

4.6 Single, Multiple, multilevel and hybrid Inheritance

4.7 Ambiguity problems in inheritance

4.8 Constructor in Derived Class

4.9 Extending operator overloading in derived class

Practical Works:

• Create single level inheritance.

• Create multiple inheritance.

• Create multilevel inheritance.

• Check the ambiguity problems.

• Revision concept of

pointer.

• Identify need of virtual

function.

• Describe Virtual

function.

• Describe the Pure virtual

function.

• Describe the Abstract

and container class

Unit 5: Virtual Function and Polymorphism (8)

5.1 Concept of Pointer

5.2 Need of virtual function

5.3 Definition of Virtual Function

5.4 Pure Virtual function

5.5 Abstract Class

5.6 Container class

Practical Works:

• Create virtual function.

• Create pure virtual function.

• Create Abstract and container class.

• Explain concept of

template.

• Define function template

and class template.

• Apply error handling in

programming.

• Apply the different

exception handling

methods.

Unit 6: Template and Exception Handling (8)

6.1 Concept of Template

6.2 Function overloading and problems

6.3 Function Template

6.4 Overloading function template

6.5 Class Template

6.6 Derived class template

6.7 Concept of error handling

6.8 Basic of exception handling

6.9 Exception handling mechanism: throw, catch and try

Practical Works:

• Create and apply function template.

• Create and apply template class.

• Apply try, catch and throw methods in program.

• Describe the concept the

procedure oriented

paradigms.

• Describe Object oriented

paradigms.

• Analysis complexity in

software development.

• Describe object oriented

analysis and design

methods.

Unit 7: Object Oriented System Development (6)

7.1 Procedure oriented paradigms

7.2 Procedure oriented development Tools

7.3 Object Oriented Paradigms

7.4 Object-Oriented Programming as a New Paradigm

7.5 Computation as Simulation

7.6 Coping with Complexity’s

7.7 Reusable Software

7.8 Object-Oriented analysis and Design

Practical Works:

Case study on comparison of procedure and object oriented

paradigms.

.

• Create console

application using C++.

Unit 8: Project (6)

Develop simple Application using (6) C++ with the feature of class,

object, inheritance, polymorphism and encapsulation.

4. Instructional Techniques

The instructional techniques for this course are divided into two groups. First group consists of general

instructional techniques applicable to most of the units. The second group consists of specific

instructional techniques applicable to particular units.

4.1 General Techniques

Reading materials will be provided to students in each unit. Lecture, Discussion, use of multi-media

projector, brain storming are used in all units.

4.2 Specific Instructional Techniques

Demonstration is an essential instructional technique for all units in this course during teaching learning

process. Specifically, demonstration with practical works will be specific instructional technique in this

course. The details of suggested instructional techniques are presented below:

Units Activities

Unit 1: Concept of

Object Oriented

Programming

• Select and Install the different compiler of C++.

• Demonstrate the programming structure of C++.

• Compare the other program provide the assignment for

understanding of objects oriented paradigms.

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 2: Object and

Class

• Demonstrate class and object creation methods in C++.

• Demonstrate the methods and attributes in Class and access from

objects.

• Demonstrate the different types of methods such as inline, statics and

friends.

• Lab work in pairs in different tasks assigned by the teacher

• Monitoring of students' work by reaching each pair and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 3: Operator

Overloading

• Demonstrate the unary and binary operator overloading methods.

• Lab work in pairs in different tasks assigned by the teacher

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 4: Inheritance • Demonstrate the single, multiple and multilevel inheritance and

applied into C++.

• Lab work in pairs in different tasks assigned by the teacher.

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 5: Virtual

Function and

Polymorphism

• Demonstrate the virtual and pure virtual functions and application.

• Demonstrate the abstract and container class.

• Lab work in pairs in different tasks assigned by the teacher.

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 6: Template and

Exception Handling

• Demonstrate the template function and class.

• Demonstrate the exception handling concept in OOPs with reference

C++.

• Monitoring of students' work by reaching each student and providing

feedback for improvement

• Presentation by students followed by peers' comments and teacher's

feedback

Unit 8: Project • Develop console application applied with OOPs Concepts.

7. Evaluation :

Internal

Assessment

External

Practical

Exam/Viva

Semester

Examination

Total Marks

40 Points 20 Points 40 Points 100 Points

Note: Students must pass separately in internal assessment, external practical exam and semester

examination.

7.1 Internal Evaluation (40 Points):

Internal evaluation will be conducted by subject teacher based on following criteria:

6) Class Attendance 5 points

7) Learning activities and class performance 5 points

8) First assignment (written assignment) 10 points

9) Second assignment (Case Study/project work with presentation) 10 points

10) Terminal Examination 10 Points

7.2 Semester Examination (40 Points)

Examination Division, Dean office will conduct final examination at the end of semester.

3) Objective question (Multiple choice 10 questions x 1mark) 10 Points

4) Subjective answer questions (6 questions x 5 marks) 30 Points

Total 40

points

7.3 External Practical Exam/Viva (20 Points):

Examination Division, Dean Office will conduct final practical examination at the end of

semester.

5. Recommended books and References materials (including relevant published articles in national

and international journals)

 Total 40 points

Recommended books:

Balagurusamy, E. (2013). Object oriented programming with C++. New Delhi: Tata

McGraw-Hill (Unit 1-8).

BaralDayasar&BaralDiwakar(2010), Secrete of Object Orientd Programming in C++,

Kathmandu, BhundipuranPrakashan (Unit 1-8).

References materials:

Robert Lafore(2003), Object Oriented Programming in Turbo C++, Galgotia Publications

Ltd. India, 2003 (Unit 1-8).

Schildt, H. (2003). C++: the complete reference (4th ed). New York: McGraw-Hill.

Lippman, S.B., Lajoie. J., C++ Primer, 3rd Ed., Addison Wesley, 1998

